Introducing Smart Cities: A Transdisciplinary Journal on the Science and Technology of Smart Cities

The Scope of Smart Cities includes the following:

  • Electrical engineering for smart cities: smart grids, smart buildings, smart homes, smart lighting, renewable energies, power electronic for smart cities, energy market, and blockchain.
  • Computer engineering and information technology engineering for smart cities and smart enterprises: ICT infrastructure and information management in smart cities; IoT architectures, protocols, and algorithms; IoT device technologies, IoT network technologies; cloud computing; autonomic computing; data management; intelligent data processing and big data management for smart cities; real-time and semantic web services; context-aware systems for smart cities; and Industry 4.0.
  • Cyber-physical systems for smart cities.
  • Virtual reality for smart cities.
  • Smart hospitals and health informatics for smart cities: smart health, e-health, digital health, telehealth, and telemedicine.
  • Transport and mobility: intelligent transportation systems and vehicular networks, smart mobility, electric mobility, smart parking, traffic congestion, city logistics, and people mobility.
  • Measurements engineering for smart cities: networks and communications, advances in smart grid sensing, sensor interface and synchronization in smart grids, multi-sensor data fusion models for smart grids and smart cities, traceability and calibration of distributed sensing grids, distributed and networked sensors for smart cities, wireless sensor networks, embedded sensing and actuating, radio frequency identification (RFID), mobile internet, and ubiquitous sensing.
  • Civil engineering for smart cities: smart city architecture and infrastructure, environmental engineering for smart cities, smart water management, sustainable districts and urban development, waste management for smart cities, smart agriculture, and green houses.
  • Weather analysis, forecasting, reporting, and flood management for smart cities.
  • Mechanical sciences and automobile engineering for smart cities.
  • Applied science and humanities for smart cities.
  • Retail for smart cities: supply chain control, NFC Payment, intelligent shopping applications, smart product management, etc.
  • Security, privacy, and emergencies in smart cities, cryptography, and identity management.
  • Smart Living: pollution control, public safety, welfare and social innovation, culture, and public spaces.
  • Smart urban governance and e-government for smart cities.
  • Business and social issues for smart cities: smart economy and business model innovation in smart cities, marketing strategies for firms offering new services in smart cities, and green and blue economy.
  • Experimentation and deployments: real solutions, system design, modelling and evaluation for smart cities, pilot deployments, and performance evaluation.
  • Trends and challenges in smart cities.
  • BigData; data storage, data analysis, governance, and visualization.
  • Smart sensors, design, use, and data transmission.
  • Social sciences such as smart governance, economic model, innovation social acceptability, law, and privacy.
  • E-governance, on-line smart services.
  • Smart maintenance.

From http://www.mdpi.com/2624-6511/1/1/1/htm

TCC de Marina Palmito Costa – junho de 2018

Vila Agrícola: projeto e tutorial / Autodesk Infraworks

Trabalho de graduação de marina Palmito Costa.

Orientador Prof. Renato Cesar

Localização

Primeiros estudos:

Resultado do Trabalho:

 

Cortes e AterrosDeclividades

 

 

Estatísticas do Terreno

 

Elevações

 

 

 

 

 

Estudos de Greide

 

Estudos de greide 2: avenida do encontro

 

 

 

 

TUTORIAIS DESTE TRABALHO (AUTODESK INFRAWORKS)

Ajuste de cruzamento para curva de caminhões.

Paisagismo

Monorail

Obtendo o terreno com a topografia

Detalhando terreno

Curvas

Culverts

Drenagem

Passagens automáticas (culverts)

Estudo de Culvert

Detecção por API Google Cloud Vision

{
"labelAnnotations": [
{
"mid": "/m/06gfj",
"description": "road",
"score": 0.9530032,
"topicality": 0.9530032
},
{
"mid": "/m/01lwf0",
"description": "alley",
"score": 0.9363264,
"topicality": 0.9363264
},
{
"mid": "/m/0dx1j",
"description": "town",
"score": 0.8972572,
"topicality": 0.8972572
},
{
"mid": "/m/017kvv",
"description": "infrastructure",
"score": 0.8839948,
"topicality": 0.8839948
},
{
"mid": "/m/01c8br",
"description": "street",
"score": 0.8640278,
"topicality": 0.8640278
},
{
"mid": "/m/0180xr",
"description": "neighbourhood",
"score": 0.8129532,
"topicality": 0.8129532
},
{
"mid": "/m/033j3c",
"description": "lane",
"score": 0.81248826,
"topicality": 0.81248826
},
{
"mid": "/m/02nfxt",
"description": "residential area",
"score": 0.71355706,
"topicality": 0.71355706
},
{
"mid": "/m/0cgh4",
"description": "building",
"score": 0.55314195,
"topicality": 0.55314195
},
{
"mid": "/m/01x314",
"description": "facade",
"score": 0.54295915,
"topicality": 0.54295915
},
{
"mid": "/m/01bqvp",
"description": "sky",
"score": 0.5257842,
"topicality": 0.5257842
},
{
"mid": "/m/01n32",
"description": "city",
"score": 0.51570433,
"topicality": 0.51570433
}
],
"textAnnotations": [
{
"locale": "en",
"description": "tom\nHSE\nTEE SETETE\nFCERE FER AFTER\n©2017 Google\n2017 Google\n©2017 Google\n2017 Google\nGoogle\n",
"boundingPoly": {
"vertices": [
{
"x": 1,
"y": 293
},
{
"x": 1193,
"y": 293
},
{
"x": 1193,
"y": 882
},
{
"x": 1,
"y": 882
}
]
}
},
{
"description": "tom",
"boundingPoly": {
"vertices": [
{
"x": 5,
"y": 293
},
{
"x": 63,
"y": 300
},
{
"x": 59,
"y": 330
},
{
"x": 1,
"y": 323
}
]
}
},
{
"description": "HSE",
"boundingPoly": {
"vertices": [
{
"x": 219,
"y": 319
},
{
"x": 287,
"y": 327
},
{
"x": 283,
"y": 357
},
{
"x": 215,
"y": 349
}
]
}
},
{
"description": "TEE",
"boundingPoly": {
"vertices": [
{
"x": 215,
"y": 368
},
{
"x": 236,
"y": 370
},
{
"x": 235,
"y": 379
},
{
"x": 214,
"y": 377
}
]
}
},
{
"description": "SETETE",
"boundingPoly": {
"vertices": [
{
"x": 241,
"y": 371
},
{
"x": 284,
"y": 376
},
{
"x": 283,
"y": 385
},
{
"x": 240,
"y": 380
}
]
}
},
{
"description": "FCERE",
"boundingPoly": {
"vertices": [
{
"x": 3,
"y": 397
},
{
"x": 81,
"y": 397
},
{
"x": 81,
"y": 412
},
{
"x": 3,
"y": 412
}
]
}
},
{
"description": "FER",
"boundingPoly": {
"vertices": [
{
"x": 88,
"y": 397
},
{
"x": 132,
"y": 397
},
{
"x": 132,
"y": 412
},
{
"x": 88,
"y": 412
}
]
}
},
{
"description": "AFTER",
"boundingPoly": {
"vertices": [
{
"x": 143,
"y": 397
},
{
"x": 185,
"y": 397
},
{
"x": 185,
"y": 412
},
{
"x": 143,
"y": 412
}
]
}
},
{
"description": "©2017",
"boundingPoly": {
"vertices": [
{
"x": 992,
"y": 596
},
{
"x": 1028,
"y": 597
},
{
"x": 1028,
"y": 615
},
{
"x": 992,
"y": 614
}
]
}
},
{
"description": "Google",
"boundingPoly": {
"vertices": [
{
"x": 1034,
"y": 597
},
{
"x": 1073,
"y": 598
},
{
"x": 1073,
"y": 616
},
{
"x": 1034,
"y": 615
}
]
}
},
{
"description": "2017",
"boundingPoly": {
"vertices": [
{
"x": 493,
"y": 605
},
{
"x": 518,
"y": 605
},
{
"x": 518,
"y": 626
},
{
"x": 493,
"y": 626
}
]
}
},
{
"description": "Google",
"boundingPoly": {
"vertices": [
{
"x": 520,
"y": 605
},
{
"x": 557,
"y": 605
},
{
"x": 557,
"y": 626
},
{
"x": 520,
"y": 626
}
]
}
},
{
"description": "©2017",
"boundingPoly": {
"vertices": [
{
"x": 677,
"y": 756
},
{
"x": 708,
"y": 756
},
{
"x": 708,
"y": 775
},
{
"x": 677,
"y": 775
}
]
}
},
{
"description": "Google",
"boundingPoly": {
"vertices": [
{
"x": 713,
"y": 756
},
{
"x": 746,
"y": 756
},
{
"x": 746,
"y": 775
},
{
"x": 713,
"y": 775
}
]
}
},
{
"description": "2017",
"boundingPoly": {
"vertices": [
{
"x": 1117,
"y": 839
},
{
"x": 1145,
"y": 846
},
{
"x": 1141,
"y": 863
},
{
"x": 1113,
"y": 856
}
]
}
},
{
"description": "Google",
"boundingPoly": {
"vertices": [
{
"x": 1148,
"y": 846
},
{
"x": 1193,
"y": 857
},
{
"x": 1188,
"y": 875
},
{
"x": 1143,
"y": 864
}
]
}
},
{
"description": "Google",
"boundingPoly": {
"vertices": [
{
"x": 665,
"y": 861
},
{
"x": 726,
"y": 861
},
{
"x": 726,
"y": 882
},
{
"x": 665,
"y": 882
}
]
}
}
],
"safeSearchAnnotation": {
"adult": "VERY_UNLIKELY",
"spoof": "VERY_UNLIKELY",
"medical": "VERY_UNLIKELY",
"violence": "VERY_UNLIKELY",
"racy": "VERY_UNLIKELY"
},
"imagePropertiesAnnotation": {
"dominantColors": {
"colors": [
{
"color": {
"red": 84,
"green": 87,
"blue": 87
},
"score": 0.2006646,
"pixelFraction": 0.25256705
},
{
"color": {
"red": 229,
"green": 230,
"blue": 232
},
"score": 0.17676832,
"pixelFraction": 0.036245212
},
{
"color": {
"red": 115,
"green": 119,
"blue": 120
},
"score": 0.18665613,
"pixelFraction": 0.06038314
},
{
"color": {
"red": 152,
"green": 155,
"blue": 155
},
"score": 0.15701443,
"pixelFraction": 0.04222222
},
{
"color": {
"red": 197,
"green": 197,
"blue": 197
},
"score": 0.13381848,
"pixelFraction": 0.038850576
},
{
"color": {
"red": 95,
"green": 84,
"blue": 68
},
"score": 0.047189564,
"pixelFraction": 0.22091953
},
{
"color": {
"red": 56,
"green": 57,
"blue": 57
},
"score": 0.034056116,
"pixelFraction": 0.24168582
},
{
"color": {
"red": 170,
"green": 154,
"blue": 138
},
"score": 0.017042931,
"pixelFraction": 0.011111111
},
{
"color": {
"red": 183,
"green": 197,
"blue": 217
},
"score": 0.015457044,
"pixelFraction": 0.0055172415
},
{
"color": {
"red": 201,
"green": 183,
"blue": 166
},
"score": 0.0094975345,
"pixelFraction": 0.004214559
}
]
}
},
"cropHintsAnnotation": {
"cropHints": [
{
"boundingPoly": {
"vertices": [
{
"x": 334
},
{
"x": 1052
},
{
"x": 1052,
"y": 880
},
{
"x": 334,
"y": 880
}
]
},
"confidence": 0.79999995,
"importanceFraction": 0.78999996
},
{
"boundingPoly": {
"vertices": [
{
"x": 258
},
{
"x": 1159
},
{
"x": 1159,
"y": 880
},
{
"x": 258,
"y": 880
}
]
},
"confidence": 0.79999995,
"importanceFraction": 0.84
},
{
"boundingPoly": {
"vertices": [
{
"x": 151
},
{
"x": 1220
},
{
"x": 1220,
"y": 880
},
{
"x": 151,
"y": 880
}
]
},
"confidence": 0.79999995,
"importanceFraction": 0.88
}
]
},
"fullTextAnnotation": {
"pages": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en",
"confidence": 0.88
},
{
"languageCode": "et",
"confidence": 0.12
}
]
},
"width": 1527,
"height": 881,
"blocks": [
{
"boundingBox": {
"vertices": [
{
"x": 5,
"y": 293
},
{
"x": 63,
"y": 300
},
{
"x": 59,
"y": 330
},
{
"x": 1,
"y": 323
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 5,
"y": 293
},
{
"x": 63,
"y": 300
},
{
"x": 59,
"y": 330
},
{
"x": 1,
"y": 323
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 5,
"y": 293
},
{
"x": 63,
"y": 300
},
{
"x": 59,
"y": 330
},
{
"x": 1,
"y": 323
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 5,
"y": 294
},
{
"x": 26,
"y": 296
},
{
"x": 22,
"y": 325
},
{
"x": 2,
"y": 323
}
]
},
"text": "t",
"confidence": 0.18
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 34,
"y": 297
},
{
"x": 50,
"y": 299
},
{
"x": 46,
"y": 328
},
{
"x": 31,
"y": 326
}
]
},
"text": "o",
"confidence": 0.38
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 51,
"y": 299
},
{
"x": 63,
"y": 300
},
{
"x": 59,
"y": 329
},
{
"x": 48,
"y": 328
}
]
},
"text": "m",
"confidence": 0.55
}
],
"confidence": 0.37
}
],
"confidence": 0.37
}
],
"blockType": "TEXT",
"confidence": 0.37
},
{
"boundingBox": {
"vertices": [
{
"x": 219,
"y": 319
},
{
"x": 287,
"y": 327
},
{
"x": 283,
"y": 357
},
{
"x": 215,
"y": 349
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 219,
"y": 319
},
{
"x": 287,
"y": 327
},
{
"x": 283,
"y": 357
},
{
"x": 215,
"y": 349
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 219,
"y": 319
},
{
"x": 287,
"y": 327
},
{
"x": 283,
"y": 357
},
{
"x": 215,
"y": 349
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 219,
"y": 319
},
{
"x": 233,
"y": 321
},
{
"x": 229,
"y": 349
},
{
"x": 216,
"y": 348
}
]
},
"text": "H",
"confidence": 0.05
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 236,
"y": 322
},
{
"x": 255,
"y": 324
},
{
"x": 251,
"y": 353
},
{
"x": 233,
"y": 351
}
]
},
"text": "S",
"confidence": 0.35
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 262,
"y": 325
},
{
"x": 287,
"y": 328
},
{
"x": 283,
"y": 357
},
{
"x": 259,
"y": 354
}
]
},
"text": "E",
"confidence": 0.02
}
],
"confidence": 0.14
}
],
"confidence": 0.14
}
],
"blockType": "TEXT",
"confidence": 0.14
},
{
"boundingBox": {
"vertices": [
{
"x": 215,
"y": 368
},
{
"x": 284,
"y": 376
},
{
"x": 282,
"y": 385
},
{
"x": 214,
"y": 377
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 215,
"y": 368
},
{
"x": 284,
"y": 376
},
{
"x": 282,
"y": 385
},
{
"x": 214,
"y": 377
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 215,
"y": 368
},
{
"x": 236,
"y": 370
},
{
"x": 235,
"y": 379
},
{
"x": 214,
"y": 377
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 215,
"y": 368
},
{
"x": 221,
"y": 369
},
{
"x": 220,
"y": 378
},
{
"x": 214,
"y": 377
}
]
},
"text": "T",
"confidence": 0.31
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 224,
"y": 369
},
{
"x": 229,
"y": 370
},
{
"x": 228,
"y": 379
},
{
"x": 223,
"y": 378
}
]
},
"text": "E",
"confidence": 0.95
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 231,
"y": 370
},
{
"x": 236,
"y": 371
},
{
"x": 235,
"y": 380
},
{
"x": 230,
"y": 379
}
]
},
"text": "E",
"confidence": 0.65
}
],
"confidence": 0.63
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 241,
"y": 371
},
{
"x": 284,
"y": 376
},
{
"x": 283,
"y": 385
},
{
"x": 240,
"y": 380
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 241,
"y": 371
},
{
"x": 246,
"y": 372
},
{
"x": 245,
"y": 381
},
{
"x": 240,
"y": 380
}
]
},
"text": "S",
"confidence": 0.45
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 248,
"y": 372
},
{
"x": 252,
"y": 372
},
{
"x": 251,
"y": 381
},
{
"x": 247,
"y": 381
}
]
},
"text": "E",
"confidence": 0.54
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 252,
"y": 372
},
{
"x": 260,
"y": 373
},
{
"x": 259,
"y": 382
},
{
"x": 251,
"y": 381
}
]
},
"text": "T",
"confidence": 0.74
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 268,
"y": 374
},
{
"x": 276,
"y": 375
},
{
"x": 275,
"y": 384
},
{
"x": 267,
"y": 383
}
]
},
"text": "E",
"confidence": 0.35
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 277,
"y": 375
},
{
"x": 281,
"y": 375
},
{
"x": 280,
"y": 384
},
{
"x": 276,
"y": 384
}
]
},
"text": "T",
"confidence": 0.43
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "et"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 282,
"y": 376
},
{
"x": 284,
"y": 376
},
{
"x": 283,
"y": 385
},
{
"x": 281,
"y": 385
}
]
},
"text": "E",
"confidence": 0.29
}
],
"confidence": 0.46
}
],
"confidence": 0.52
}
],
"blockType": "TEXT",
"confidence": 0.52
},
{
"boundingBox": {
"vertices": [
{
"x": 3,
"y": 397
},
{
"x": 185,
"y": 397
},
{
"x": 185,
"y": 412
},
{
"x": 3,
"y": 412
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 3,
"y": 397
},
{
"x": 185,
"y": 397
},
{
"x": 185,
"y": 412
},
{
"x": 3,
"y": 412
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 3,
"y": 397
},
{
"x": 81,
"y": 397
},
{
"x": 81,
"y": 412
},
{
"x": 3,
"y": 412
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 3,
"y": 397
},
{
"x": 22,
"y": 397
},
{
"x": 22,
"y": 412
},
{
"x": 3,
"y": 412
}
]
},
"text": "F",
"confidence": 0.13
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 29,
"y": 397
},
{
"x": 44,
"y": 397
},
{
"x": 44,
"y": 412
},
{
"x": 29,
"y": 412
}
]
},
"text": "C",
"confidence": 0.48
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 45,
"y": 397
},
{
"x": 55,
"y": 397
},
{
"x": 55,
"y": 412
},
{
"x": 45,
"y": 412
}
]
},
"text": "E",
"confidence": 0.8
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 58,
"y": 397
},
{
"x": 68,
"y": 397
},
{
"x": 68,
"y": 412
},
{
"x": 58,
"y": 412
}
]
},
"text": "R",
"confidence": 0.84
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 71,
"y": 397
},
{
"x": 81,
"y": 397
},
{
"x": 81,
"y": 412
},
{
"x": 71,
"y": 412
}
]
},
"text": "E",
"confidence": 0.86
}
],
"confidence": 0.62
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 88,
"y": 397
},
{
"x": 132,
"y": 397
},
{
"x": 132,
"y": 412
},
{
"x": 88,
"y": 412
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 88,
"y": 397
},
{
"x": 105,
"y": 397
},
{
"x": 105,
"y": 412
},
{
"x": 88,
"y": 412
}
]
},
"text": "F",
"confidence": 0.28
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 113,
"y": 397
},
{
"x": 126,
"y": 397
},
{
"x": 126,
"y": 412
},
{
"x": 113,
"y": 412
}
]
},
"text": "E",
"confidence": 0.85
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 126,
"y": 397
},
{
"x": 132,
"y": 397
},
{
"x": 132,
"y": 412
},
{
"x": 126,
"y": 412
}
]
},
"text": "R",
"confidence": 0.86
}
],
"confidence": 0.66
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 143,
"y": 397
},
{
"x": 185,
"y": 397
},
{
"x": 185,
"y": 412
},
{
"x": 143,
"y": 412
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 143,
"y": 397
},
{
"x": 150,
"y": 397
},
{
"x": 150,
"y": 412
},
{
"x": 143,
"y": 412
}
]
},
"text": "A",
"confidence": 0.33
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 153,
"y": 397
},
{
"x": 160,
"y": 397
},
{
"x": 160,
"y": 412
},
{
"x": 153,
"y": 412
}
]
},
"text": "F",
"confidence": 0.1
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 161,
"y": 397
},
{
"x": 168,
"y": 397
},
{
"x": 168,
"y": 412
},
{
"x": 161,
"y": 412
}
]
},
"text": "T",
"confidence": 0.33
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 171,
"y": 397
},
{
"x": 177,
"y": 397
},
{
"x": 177,
"y": 412
},
{
"x": 171,
"y": 412
}
]
},
"text": "E",
"confidence": 0.71
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 179,
"y": 397
},
{
"x": 185,
"y": 397
},
{
"x": 185,
"y": 412
},
{
"x": 179,
"y": 412
}
]
},
"text": "R",
"confidence": 0.27
}
],
"confidence": 0.34
}
],
"confidence": 0.52
}
],
"blockType": "TEXT",
"confidence": 0.52
},
{
"boundingBox": {
"vertices": [
{
"x": 992,
"y": 596
},
{
"x": 1073,
"y": 598
},
{
"x": 1073,
"y": 616
},
{
"x": 992,
"y": 614
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 992,
"y": 596
},
{
"x": 1073,
"y": 598
},
{
"x": 1073,
"y": 616
},
{
"x": 992,
"y": 614
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 992,
"y": 596
},
{
"x": 1028,
"y": 597
},
{
"x": 1028,
"y": 615
},
{
"x": 992,
"y": 614
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 992,
"y": 596
},
{
"x": 999,
"y": 596
},
{
"x": 999,
"y": 614
},
{
"x": 992,
"y": 614
}
]
},
"text": "©",
"confidence": 0.63
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1002,
"y": 596
},
{
"x": 1007,
"y": 596
},
{
"x": 1007,
"y": 614
},
{
"x": 1002,
"y": 614
}
]
},
"text": "2",
"confidence": 0.63
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1008,
"y": 596
},
{
"x": 1013,
"y": 596
},
{
"x": 1013,
"y": 614
},
{
"x": 1008,
"y": 614
}
]
},
"text": "0",
"confidence": 0.72
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1017,
"y": 597
},
{
"x": 1022,
"y": 597
},
{
"x": 1022,
"y": 615
},
{
"x": 1017,
"y": 615
}
]
},
"text": "1",
"confidence": 0.97
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 1024,
"y": 597
},
{
"x": 1028,
"y": 597
},
{
"x": 1028,
"y": 615
},
{
"x": 1024,
"y": 615
}
]
},
"text": "7",
"confidence": 0.48
}
],
"confidence": 0.68
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1034,
"y": 597
},
{
"x": 1073,
"y": 598
},
{
"x": 1073,
"y": 616
},
{
"x": 1034,
"y": 615
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1034,
"y": 597
},
{
"x": 1040,
"y": 597
},
{
"x": 1040,
"y": 615
},
{
"x": 1034,
"y": 615
}
]
},
"text": "G",
"confidence": 0.41
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1043,
"y": 597
},
{
"x": 1050,
"y": 597
},
{
"x": 1050,
"y": 615
},
{
"x": 1043,
"y": 615
}
]
},
"text": "o",
"confidence": 0.73
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1052,
"y": 597
},
{
"x": 1056,
"y": 597
},
{
"x": 1056,
"y": 615
},
{
"x": 1052,
"y": 615
}
]
},
"text": "o",
"confidence": 0.96
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1057,
"y": 598
},
{
"x": 1062,
"y": 598
},
{
"x": 1062,
"y": 616
},
{
"x": 1057,
"y": 616
}
]
},
"text": "g",
"confidence": 0.57
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1066,
"y": 598
},
{
"x": 1070,
"y": 598
},
{
"x": 1070,
"y": 616
},
{
"x": 1066,
"y": 616
}
]
},
"text": "l",
"confidence": 0.97
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 1070,
"y": 598
},
{
"x": 1073,
"y": 598
},
{
"x": 1073,
"y": 616
},
{
"x": 1070,
"y": 616
}
]
},
"text": "e",
"confidence": 0.55
}
],
"confidence": 0.69
}
],
"confidence": 0.69
}
],
"blockType": "TEXT",
"confidence": 0.69
},
{
"boundingBox": {
"vertices": [
{
"x": 493,
"y": 605
},
{
"x": 557,
"y": 605
},
{
"x": 557,
"y": 626
},
{
"x": 493,
"y": 626
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 493,
"y": 605
},
{
"x": 557,
"y": 605
},
{
"x": 557,
"y": 626
},
{
"x": 493,
"y": 626
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 493,
"y": 605
},
{
"x": 518,
"y": 605
},
{
"x": 518,
"y": 626
},
{
"x": 493,
"y": 626
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 493,
"y": 605
},
{
"x": 498,
"y": 605
},
{
"x": 498,
"y": 626
},
{
"x": 493,
"y": 626
}
]
},
"text": "2",
"confidence": 0.09
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 500,
"y": 605
},
{
"x": 505,
"y": 605
},
{
"x": 505,
"y": 626
},
{
"x": 500,
"y": 626
}
]
},
"text": "0",
"confidence": 0.19
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 506,
"y": 605
},
{
"x": 511,
"y": 605
},
{
"x": 511,
"y": 626
},
{
"x": 506,
"y": 626
}
]
},
"text": "1",
"confidence": 0.07
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 513,
"y": 605
},
{
"x": 518,
"y": 605
},
{
"x": 518,
"y": 626
},
{
"x": 513,
"y": 626
}
]
},
"text": "7",
"confidence": 0.27
}
],
"confidence": 0.15
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 520,
"y": 605
},
{
"x": 557,
"y": 605
},
{
"x": 557,
"y": 626
},
{
"x": 520,
"y": 626
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 520,
"y": 605
},
{
"x": 528,
"y": 605
},
{
"x": 528,
"y": 626
},
{
"x": 520,
"y": 626
}
]
},
"text": "G",
"confidence": 0.83
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 533,
"y": 605
},
{
"x": 538,
"y": 605
},
{
"x": 538,
"y": 626
},
{
"x": 533,
"y": 626
}
]
},
"text": "o",
"confidence": 0.88
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 537,
"y": 605
},
{
"x": 541,
"y": 605
},
{
"x": 541,
"y": 626
},
{
"x": 537,
"y": 626
}
]
},
"text": "o",
"confidence": 0.87
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 544,
"y": 605
},
{
"x": 548,
"y": 605
},
{
"x": 548,
"y": 626
},
{
"x": 544,
"y": 626
}
]
},
"text": "g",
"confidence": 0.86
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 549,
"y": 605
},
{
"x": 552,
"y": 605
},
{
"x": 552,
"y": 626
},
{
"x": 549,
"y": 626
}
]
},
"text": "l",
"confidence": 0.86
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 553,
"y": 605
},
{
"x": 557,
"y": 605
},
{
"x": 557,
"y": 626
},
{
"x": 553,
"y": 626
}
]
},
"text": "e",
"confidence": 0.65
}
],
"confidence": 0.82
}
],
"confidence": 0.55
}
],
"blockType": "TEXT",
"confidence": 0.55
},
{
"boundingBox": {
"vertices": [
{
"x": 677,
"y": 756
},
{
"x": 746,
"y": 756
},
{
"x": 746,
"y": 775
},
{
"x": 677,
"y": 775
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 677,
"y": 756
},
{
"x": 746,
"y": 756
},
{
"x": 746,
"y": 775
},
{
"x": 677,
"y": 775
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 677,
"y": 756
},
{
"x": 708,
"y": 756
},
{
"x": 708,
"y": 775
},
{
"x": 677,
"y": 775
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 677,
"y": 756
},
{
"x": 683,
"y": 756
},
{
"x": 683,
"y": 775
},
{
"x": 677,
"y": 775
}
]
},
"text": "©",
"confidence": 0.61
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 686,
"y": 756
},
{
"x": 691,
"y": 756
},
{
"x": 691,
"y": 775
},
{
"x": 686,
"y": 775
}
]
},
"text": "2",
"confidence": 0.92
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 692,
"y": 756
},
{
"x": 696,
"y": 756
},
{
"x": 696,
"y": 775
},
{
"x": 692,
"y": 775
}
]
},
"text": "0",
"confidence": 0.96
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 698,
"y": 756
},
{
"x": 702,
"y": 756
},
{
"x": 702,
"y": 775
},
{
"x": 698,
"y": 775
}
]
},
"text": "1",
"confidence": 0.97
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 704,
"y": 756
},
{
"x": 708,
"y": 756
},
{
"x": 708,
"y": 775
},
{
"x": 704,
"y": 775
}
]
},
"text": "7",
"confidence": 0.95
}
],
"confidence": 0.88
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 713,
"y": 756
},
{
"x": 746,
"y": 756
},
{
"x": 746,
"y": 775
},
{
"x": 713,
"y": 775
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 713,
"y": 756
},
{
"x": 719,
"y": 756
},
{
"x": 719,
"y": 775
},
{
"x": 713,
"y": 775
}
]
},
"text": "G",
"confidence": 0.94
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 722,
"y": 756
},
{
"x": 727,
"y": 756
},
{
"x": 727,
"y": 775
},
{
"x": 722,
"y": 775
}
]
},
"text": "o",
"confidence": 0.74
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 728,
"y": 756
},
{
"x": 732,
"y": 756
},
{
"x": 732,
"y": 775
},
{
"x": 728,
"y": 775
}
]
},
"text": "o",
"confidence": 0.64
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 735,
"y": 756
},
{
"x": 738,
"y": 756
},
{
"x": 738,
"y": 775
},
{
"x": 735,
"y": 775
}
]
},
"text": "g",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 739,
"y": 756
},
{
"x": 742,
"y": 756
},
{
"x": 742,
"y": 775
},
{
"x": 739,
"y": 775
}
]
},
"text": "l",
"confidence": 0.4
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 743,
"y": 756
},
{
"x": 746,
"y": 756
},
{
"x": 746,
"y": 775
},
{
"x": 743,
"y": 775
}
]
},
"text": "e",
"confidence": 0.9
}
],
"confidence": 0.76
}
],
"confidence": 0.82
}
],
"blockType": "TEXT",
"confidence": 0.82
},
{
"boundingBox": {
"vertices": [
{
"x": 1117,
"y": 838
},
{
"x": 1193,
"y": 857
},
{
"x": 1188,
"y": 875
},
{
"x": 1112,
"y": 856
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 1117,
"y": 838
},
{
"x": 1193,
"y": 857
},
{
"x": 1188,
"y": 875
},
{
"x": 1112,
"y": 856
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1117,
"y": 839
},
{
"x": 1145,
"y": 846
},
{
"x": 1141,
"y": 863
},
{
"x": 1113,
"y": 856
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1117,
"y": 839
},
{
"x": 1121,
"y": 840
},
{
"x": 1117,
"y": 857
},
{
"x": 1113,
"y": 856
}
]
},
"text": "2",
"confidence": 0.85
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1122,
"y": 840
},
{
"x": 1127,
"y": 841
},
{
"x": 1123,
"y": 859
},
{
"x": 1118,
"y": 857
}
]
},
"text": "0",
"confidence": 0.84
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1131,
"y": 842
},
{
"x": 1137,
"y": 843
},
{
"x": 1133,
"y": 861
},
{
"x": 1127,
"y": 859
}
]
},
"text": "1",
"confidence": 0.85
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "SPACE"
}
},
"boundingBox": {
"vertices": [
{
"x": 1139,
"y": 844
},
{
"x": 1145,
"y": 845
},
{
"x": 1141,
"y": 863
},
{
"x": 1135,
"y": 861
}
]
},
"text": "7",
"confidence": 0.79
}
],
"confidence": 0.83
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1148,
"y": 846
},
{
"x": 1193,
"y": 857
},
{
"x": 1188,
"y": 875
},
{
"x": 1143,
"y": 864
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1148,
"y": 846
},
{
"x": 1156,
"y": 848
},
{
"x": 1151,
"y": 865
},
{
"x": 1144,
"y": 863
}
]
},
"text": "G",
"confidence": 0.86
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1159,
"y": 849
},
{
"x": 1166,
"y": 851
},
{
"x": 1161,
"y": 868
},
{
"x": 1155,
"y": 866
}
]
},
"text": "o",
"confidence": 0.87
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1167,
"y": 851
},
{
"x": 1174,
"y": 853
},
{
"x": 1169,
"y": 870
},
{
"x": 1163,
"y": 868
}
]
},
"text": "o",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1178,
"y": 854
},
{
"x": 1182,
"y": 855
},
{
"x": 1178,
"y": 872
},
{
"x": 1174,
"y": 871
}
]
},
"text": "g",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 1183,
"y": 855
},
{
"x": 1187,
"y": 856
},
{
"x": 1183,
"y": 873
},
{
"x": 1179,
"y": 872
}
]
},
"text": "l",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 1189,
"y": 857
},
{
"x": 1193,
"y": 858
},
{
"x": 1189,
"y": 875
},
{
"x": 1185,
"y": 874
}
]
},
"text": "e",
"confidence": 0.99
}
],
"confidence": 0.94
}
],
"confidence": 0.9
}
],
"blockType": "TEXT",
"confidence": 0.9
},
{
"boundingBox": {
"vertices": [
{
"x": 665,
"y": 861
},
{
"x": 726,
"y": 861
},
{
"x": 726,
"y": 882
},
{
"x": 665,
"y": 882
}
]
},
"paragraphs": [
{
"boundingBox": {
"vertices": [
{
"x": 665,
"y": 861
},
{
"x": 726,
"y": 861
},
{
"x": 726,
"y": 882
},
{
"x": 665,
"y": 882
}
]
},
"words": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 665,
"y": 861
},
{
"x": 726,
"y": 861
},
{
"x": 726,
"y": 882
},
{
"x": 665,
"y": 882
}
]
},
"symbols": [
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 665,
"y": 861
},
{
"x": 676,
"y": 861
},
{
"x": 676,
"y": 882
},
{
"x": 665,
"y": 882
}
]
},
"text": "G",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 680,
"y": 861
},
{
"x": 690,
"y": 861
},
{
"x": 690,
"y": 882
},
{
"x": 680,
"y": 882
}
]
},
"text": "o",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 692,
"y": 861
},
{
"x": 701,
"y": 861
},
{
"x": 701,
"y": 882
},
{
"x": 692,
"y": 882
}
]
},
"text": "o",
"confidence": 1
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 706,
"y": 861
},
{
"x": 714,
"y": 861
},
{
"x": 714,
"y": 882
},
{
"x": 706,
"y": 882
}
]
},
"text": "g",
"confidence": 1
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
]
},
"boundingBox": {
"vertices": [
{
"x": 714,
"y": 861
},
{
"x": 719,
"y": 861
},
{
"x": 719,
"y": 882
},
{
"x": 714,
"y": 882
}
]
},
"text": "l",
"confidence": 0.99
},
{
"property": {
"detectedLanguages": [
{
"languageCode": "en"
}
],
"detectedBreak": {
"type": "LINE_BREAK"
}
},
"boundingBox": {
"vertices": [
{
"x": 721,
"y": 861
},
{
"x": 726,
"y": 861
},
{
"x": 726,
"y": 882
},
{
"x": 721,
"y": 882
}
]
},
"text": "e",
"confidence": 1
}
],
"confidence": 0.99
}
],
"confidence": 0.99
}
],
"blockType": "TEXT",
"confidence": 0.99
}
]
}
],
"text": "tom\nHSE\nTEE SETETE\nFCERE FER AFTER\n©2017 Google\n2017 Google\n©2017 Google\n2017 Google\nGoogle\n"
},
"webDetection": {
"webEntities": [
{
"entityId": "/m/03p1p8r",
"score": 0.4678,
"description": "Sky plc"
}
],
"visuallySimilarImages": [
{
"url": "http://donswaim.com/bierce-alley-lookingout.jpg"
},
{
"url": "http://forgotten-ny.com/wp-content/uploads/2014/02/mechanics.madison.henry_.jpg"
},
{
"url": "https://static1.squarespace.com/static/5161c548e4b0f29c92648982/5718e5672fe131333b909e30/5718e56745bf2142842359dc/1461250387112/alley-0927.jpg"
},
{
"url": "http://harryqh.com/wp-content/uploads/2015/02/Side-Lane.jpg"
},
{
"url": "https://static.panoramio.com.storage.googleapis.com/photos/large/12335615.jpg"
},
{
"url": "https://www.inside-guide-to-san-francisco-tourism.com/image-files/chinatown-san-francisco-st-louis-alley.jpg"
},
{
"url": "https://www.ianvisits.co.uk/blog/wp-content/uploads/2017/12/masons-avenue-03.jpg"
},
{
"url": "https://static1.squarespace.com/static/5a7201b59f8dceb7430bc184/5a72114be2c4838460be7c02/5ad115d7352f53c87af22d29/1523652057810/Alley.jpg"
},
{
"url": "https://vijilworldtour.files.wordpress.com/2015/10/dscf1902.jpg?w=660&h=371"
},
{
"url": "https://alondoninheritance.com/wp-content/uploads/2018/03/Goodwins-Court-4-680x1024.jpg"
},
{
"url": "http://allianceforpioneersquare.org/wp/wp-content/uploads/2016/01/482634_591313440913412_13448409_n.jpg"
},
{
"url": "https://alondoninheritance.com/wp-content/uploads/2018/03/Goodwins-Court-2-1024x680.jpg"
},
{
"url": "https://irp-cdn.multiscreensite.com/4a50c93c/dms3rep/multi/2-Mechanics+Alley-0b9f1d8e.jpg"
},
{
"url": "https://assets.urbanturf.com/dc/images/blog/2016/02/alley_shot.jpg"
},
{
"url": "http://onthesetofnewyork.com/locations/nineandahalfweeks/nineweeks156.jpg"
},
{
"url": "http://i.dailymail.co.uk/i/pix/2013/08/09/article-0-1B347BC3000005DC-944_964x563.jpg"
},
{
"url": "https://avignoncapital.com/wp-content/uploads/2017/03/DSC01459-368x254.jpg"
},
{
"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/7/76/Ironmonger_Lane_City_of_London.JPG/220px-Ironmonger_Lane_City_of_London.JPG"
},
{
"url": "http://lenscapes.biz/wp-content/uploads/2010/02/old-havana-alley.jpg"
},
{
"url": "http://wallpapered.city/wp-content/uploads/2016/09/080816_EastsideViews_334-400x250.jpg"
}
],
"bestGuessLabels": [
{
"label": "alley"
}
]
}
}

O Instituto Brasileiro de Geografia e Estatística - IBGE lançou a publicação �reas Urbanizadas do Brasil que mapeia as manchas urbanas das grandes cidades brasileiras. Abrangendo as mudanças ocorridas no período entre 2011 e 2015, o trabalho apresenta uma panorama do processo de urbanização recente do país.

O documento é a continuação de um projeto pioneiro realizado pelo Instituto em 2005, porém, agora alinhado com as necessidades dos Objetivos de Desenvolvimento Sustentável – ODS e da Agenda 2030 para o Desenvolvimento Sustentável, estabelecidos pela Cúpula das Nações Unidas sobre o Desenvolvimento Sustentável, realizada em 2015, assim como da Nova Agenda Urbana, pactuada na III Conferência das Nações Unidas sobre Moradia e Desenvolvimento Urbano Sustentável – Habitat III, realizada em 2016.

Os mapeamentos foram realizados com base em imagens de satélite RapidEye de alta resolução e têm como objetivo “fornecer uma perspectiva da urbanização brasileira, de modo a complementar estudos acerca da forma urbana e suas diferenciações regionais, da influência do meio físico (topografia, rios etc.) na conformação das áreas urbanizadas, bem como de estudos focados na identificação de tendências e potenciais vetores de expansão das cidades”, afirma a equipe técnica na introdução da publicação.

A série de mapas está disponível gratuitamente para download na página do IBGE.

Fonte: Ã?reas Urbanizadas do Brasil

Nobel winner declares boycott of top science journals | Science | The Guardian

Revistas acadêmicas líderes estão distorcendo o processo científico e representam uma “tirania” que deve ser quebrada, de acordo com um ganhador do prêmio Nobel que declarou um boicote às publicações. Randy Schekman, um biólogo norte-americano que ganhou o prêmio Nobel de fisiologia e medicina este ano e recebe seu prêmio em Estocolmo na terça-feira, disse que seu laboratório não enviará mais trabalhos de pesquisa para as revistas Nature, Cell e Science. Schekman disse que a pressão para publicar em periódicos de “luxo” encorajou os pesquisadores a cortar custos e seguir os campos da moda em vez de fazer trabalhos mais importantes. O problema foi exacerbado, segundo ele, por editores que não eram cientistas ativos, mas profissionais que favoreciam estudos que provavelmente causariam impacto.

Fonte: Nobel winner declares boycott of top science journals | Science | The Guardian

(21) virtualcityMAP 3.0 – CityGML-based 3D web mapping solutions – YouTube

Science we published the virtualcitySUITE 3.0 in March we took our 3D map applications to a new level. Now you are able to get access to your city model on all current devices. This has become possible by our new WebGL-based rendering technology based on CesiumJS. CesiumJS an open source project to create plugin free web-based globes and 3d map applications. The power of WebGL make it possible to explore 3d city models on the PC, tablet or smartphone. The Berlin Economic Atlas, which is based on our new vir

Auditing the Pedestrian Environment: A Brief Tool for Practitioners & Community Members | Active Living Research

The Surgeon General announced the numerous and profound health benefits that Americans can gain simply by walking more. He made a Call to Action for more walking, but also for better walkability which means environmental conditions that makes walking safe, convenient, and enjoyable. “Walkability” is used in different ways. City planners refer to walkability as designing neighborhoods so people can walk from their homes to common destinations like shops and schools. There is much research showing that people of all ages do walk more for transportation in walkable neighborhoods, but the layout of communities is very difficult to change.

 

Fonte: Auditing the Pedestrian Environment: A Brief Tool for Practitioners & Community Members | Active Living Research

Machine learning and AI for social good: views from NIPS 2017 | In Verba | Royal Society

The question is not ‘is AI good or bad?’ but ‘how will we use it?’

Behind (or beyond) the headlines proclaiming that AI will save the world or destroy our jobs, there lie significant questions about how, where, and why society will make use of AI technologies. These questions are not about whether the technology itself is inherently productive or destructive, but about how society will choose to use it, and how the benefits of its use can be shared across society.

In healthcare, machine learning offers the prospect of improved diagnostic tools, new approaches to healthcare delivery, and new treatments based on personalised medicine.  In transport, machine learning can support the development of autonomous driving systems, as well as enabling intelligent traffic management, and improving safety on the roads.  And socially-assistive robotics technologies are being developed to provide assistance that can improve quality of life for their users. Teams in the AI Xprize competition are developing applications across these areas, and more, including education, drug-discovery, and scientific research.

 

Fonte: Machine learning and AI for social good: views from NIPS 2017 | In Verba | Royal Society

UFMG – Universidade Federal de Minas Gerais – Qual é o papel das universidades no planejamento da Grande BH?

Como incluir as universidades no planejamento da Região Metropolitana? A partir desta questão, o mestrando em Arquitetura e Urbanismo, Eduardo Memória, desenvolve sua dissertação na UFMG. Hoje, a coluna de Questões Metropolitanas traz as linhas gerais desse trabalho, que pode nortear os próximos passos do planejamento da Grande BH. A coluna traz, além do pesquisador do Centro de Desenvolvimento e Planejamento Regional da UFMG (Cedeplar), Roberto Monte-mór, os professores Rogério Palhares e Renato César Ferreira, além do pesquisador Eduardo Memória.

Fonte: UFMG – Universidade Federal de Minas Gerais – Qual é o papel das universidades no planejamento da Grande BH?